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ABSTRACT

Solutions corresponding to climatic equilibrium are usually obtained from atmospheric general circulation
models by extended numerical integration with respect to time. Because the ocean contains a much wider
range of time scales, the same procedure is not practical for ocean general circulation models. The ocean
contains the same high frequency waves as the atmosphere and in addition, has uitra low frequencies associated
with slow diffusion of water mass properties below the main thermocline. For the parameter range in which
equilibrium solutions exist, a method based on distorted physics partially circumvents this difficulty. The
distorted physics compresses the frequency band of the ocean model by slowing down gravity waves and
speeding up abyssal processes. The acceleration of abyssal processes is accomplished by decreasing the local
heat capacity without altering the transport and mixing of heat. Numerical integration of the distorted-physics
ocean model then converges to equilibrium nearly as efficiently as an atmospheric model of comparable spatial
resolution. Equilibrium solutions of the distorted- and nondistorted-ocean models are equivalent because the
distortion only involves local derivatives with respect to time. A joint ocean-atmosphere model study provides
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a practical demonstration of the method.

1. Introduction

In climate research rather detailed numerical models
of the atmosphere, called atmospheric general circu-
lation models (GCMs), have proven to be extremely
useful in solving many basic problems, particularly the
sensitivity to small changes in radiation or external
boundary conditions. However, application of these
atmospheric models can only be carried up to a certain
point. Basic climatic questions can only be answered
by taking into consideration the entire fluid envelope
of the earth, including the ocean. A reasonable question
to ask is the following: Are the same numerical methods
used successfully in the atmospheric GCMs also ap-
plicable to the oceans, or do they require substantial
modification? The question is certainly a natural one,
since the physics which govern the ocean and the at-
mosphere are the same. The atmosphere responds to
changing external boundary conditions in less than
one year. Thus it is possible to find solutions corre-
sponding to atmospheric equilibrium by a straight-
forward numerical integration, similar to an extended
weather forecast. In fact, the more detailed atmospheric
GCMs are not unlike those used in medium range
forecasting. On the other hand, the heat capacity of
the ocean is more than three orders of magnitude
greater than that of the atmosphere. The turnover time
of ocean waters is so extremely long that the time
required for the ocean to adjust to external boundary
conditions is of the order of 1000 years. Since the
ocean also retains many of the high frequency processes
that are contained in the atmosphere, the ocean rep-

resents a broad-banded system with a frequency-range
order of magnitude greater than the atmosphere. It is
obviously impractical to force ocean models of even
moderate spatial resolution to equilibrium by straight-
forward numerical integration. Estimates of computer
requirements for some typical examples are given in
Appendix A.

Some problems in climate can be studied by coupled
models of the ocean and atmosphere without the ocean
model being in equilibrium. After all, the real ocean
is probably not in complete equilibrium with the pres-
ent climate. At any given time the global ocean is
probably heating or cooling. However, too large a de-
parture from equilibrium in the ocean component of
a climate model causes a climate “drift” which may
obscure any conclusions to be drawn in a climate study.
Over the years the author and his colleagues have de-
veloped an iterative method for forcing low-resolution
ocean circulation models to equilibrium solutions
without resorting to lengthy numerical integration of
the full model. The method is based on modifying the
time scales of the system to reduce the bandwidth of
natural frequencies of the model by distorting the
physics. A notable example of this same approach is
the work of Chorin (1967) on steady-state Bénard con-
vection.. The basic idea is to find another physical sys-
tem which has the same steady-state solution, but which
has time-dependent properties more favorable for nu-
merical integration to equilibrium than the original
system.

The following section is devoted to defining the
model and estimating the speed of ocean currents and
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the velocity of gravity waves. This is followed by an
analysis of the effect of the distorted physics on the
dispersion of gravity waves and Rossby waves for both
the extra tropics and the equatorial oceans. The mod-
ification of baroclinic instability by the distorted physics
is briefly presented in another section, followed by a
description of the application of the method to a specific
example of a coupled ocean-atmosphere model.

The more standard approach to reducing the fre-
quency bandwidth of models is filtering. An example
is the quasi-geostrophic approximation introduced by
Charney (see Pedlosky, 1979). Hasselmann (1982) has
recently proposed methods for ocean climate models
which involve extensive filtering, and a novel method
of decoupling regions of “fast” and “slow” physics.
The relationship between Hasselmann'’s approach and
the distorted physics approach used here will be dis-
cussed in a concluding section.

2. Model equations

To fix ideas, let us set down the governing equations
of an ocean model. Let u represent the horizontal ve-
locity, and V the horizontal gradient operator. The
equations of motion with the Boussinesq assumption,
and the continuity equation may be written

v
d,u+kau+—£=F,

(2.1

Po
pg+9,P=0, (2.2)
Veu+9,w=0. 2.3)

Here d, is the substantive derivative, d, the partial de-
rivative with respect to z, fis the Coriolis parameter,
P the pressure and p the density; po is the reference
density, w the vertical component of velocity, g the
acceleration of gravity and F represents an unspecified
closure approximation for smaller-scale, unresolved
motions. The metric terms involving the relative an-
gular velocity about the Earth’s axis of rotation of the
currents are included in atmospheric models, but can
safely be neglected in ocean models.

The equation of state for sea water is a complicated
expression involving potential temperature ¢ pressure
and salinity S.

p =G(p, 96, S)

It is convenient to use potential temperature as a pre-
dicted variable, rather than temperature itself to allow
for the effects of compression. The predictive equations
for potential temperature and salinity may be written

0 Q)
d 1
(5)- )
where Q and o represent the closure approximations

representing the effects of mixing by unresolved mo-
tions.

(2.9)

2.5)
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Let us compare the problem of finding equilibrium
in ocean models with that of finding equilibrium in
atmospheric models. State-of-the-art atmospheric gen-
eral circulation models resolve synoptic-scale motions
and contain fairly detailed models of radiation and
the hydrologic cycle. As stated in the Introduction,
such a mode! will reach equilibrium in 6 to 12 months
of integration with respect to time. The heat capacity
of the atmosphere is less than 1/1000 that of the ocean,
while the heating anomalies driving the two systems
to equilibrium are essentially the same. Thus complete
equilibration of the ocean, including the deep ocean,
will require from 500 to 1000 years. Radioactive tracers
provide independent confirmation of these time scales.

To gauge the effort required to make straightforward
numerical integration over the equivalent of 500 to
1000 years we can examine the wave and current ve-
locities shown in Table 1. Table 1 shows that there is
no real difference between the phase speeds of the
external modes in the atmosphere and the ocean. If
external gravity waves are fully resolved the limitations
on time step would be about the same in both models.
When the external gravity mode is filtered out of the
ocean model, the situation is better. The time step for
ocean models can be 100 times longer than that of
the atmosphere, but even this advantage does not
compensate for the difference of 1000 in the natural
time scales.

3. Distorted physics

In order to analyze the behavior of the distorted-
physics model, consider an adiabatic frictionless ver-
sion of the model specified in Section 2 which is lin-
earized about a resting basic state. Let us lump the
effects of temperature and salinity together into a single
variable. For convenience, let the buoyancy be defined
as
—pg

Po

To represent the distorted physics we will introduce
two parameters, « and v, where « is a global constant
and v is a function of depth only. The equivalent of
(1.1)~(1.5) is

b= (3.1)

TABLE 1. Velocities of physical phenomena which may limit the
time step of a numerical integration in an atmospheric or ocean
model in units of m s~*,

Type Atmosphere Ocean
Gravity wave
External 300 200
First internal mode 100 3
Currents
Jets 150 1.5
Interior — 0.2
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A\
ou + — (fk><u+—P)=o, (3.2)
Po
b— ©:P) =0, (3.3)
Po
Veu+dw=0, 3.4)
2
4,b + Nw = Q. (3.5)
Y

In (3.5) N? is the Brunt-Viisild frequency. Egs. (3.2)
and (3.5) can be restored to their usual form by in-
troducing a stretched time and an artificial stratifica-
tion. Thus (3.2) and (3.5) become

vP
du+fkXu+—=

3.6)
Po
db+ N'w=0. (3.7)
Here ¢’ = t/a is a stretched time and N” = N2a/v is

a distorted stratification. The advantage of casting the
equations in this form is that it then becomes possible
to perform a vertical normal mode decomposition (see
Moore and Philander, 1977). Expanding the velocny
and pressure in terms of

Z (Un, ghn)Z,,

()
u,—}] =
fo n=1

the normal modes Z,, of (3.2)~(3.5). Substituting (3.8)
into (3.6), (3.7), (3.3) and (3.4), we obtain a set of
shallow water equations for each mode.

U, +fk XU, + gVh,=0, 3.9
oh, + H,V-U, =0. (3.10)

In the next two sections the effect of the distorted
physics on the dispersion of midlatitude and equatorial
waves will be analyzed on the basis of (3.9) and (3.10).

(3.8)

4. Midlatitude waves

Let us consider solutions to (3.9) and (3.10) of the
form, .
~ explitkx + Iy — w't")].

Uy, hy 4.1)

In the case of a midlatitude f-plane, the dispersion
relation becomes

W=+ gH(k? + ). 4.2)

If we consider only the very simple case in which only
« is greater than one and v = 1 at all depths,

H, = H,a. 4.3)
Since, in general,

o = wa, 4.4)

(In principle the case of v varying with z could be
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considered, but it involves fmding a new set of equiv-
alent depths, H,, n = 1, 2.+ -) substitution of (4.3)
into (4.2) yields

2
oL ()

Dispersion curves in the w-k plane for inertia-gravity
waves are shown in Fig. 1 for o = 20. The effect of
large « is to reduce the frequency and lower the speed
of gravity waves by a factor of a2, .

Since the frequencies of gravity waves and Rossby
waves are well separated in midlatitudes, we can cal-
culate the dispersion of Rossby waves for the quasi-
geostrophic form of (3.9) and (3.10)

(4.5)

8V? — (f*/gH")h + Bdh = 0. (4.6)
Substituting in the solution (4.1) we obtain,
2\~
- = T+ 1P+ —f—-—) . .
w ﬂk(k l T 4.7)

For the case of ¥ = 1, (4.7) combined with (4.3) and
(4.4) becomes,

w= —3k[a(k2 +1?) *2 f? ]

Equation (4.8) has an interesting asymptotic behavior.
As (k% + /%) — 0, the effect of the distorted physics
vanishes. Fig. 1 shows that for / = ( the distorted and
undistorted curves merge as k — 0. The general effect

4.8)
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FI1G. 1. Dispersion diagram for midlatitude waves corresponding
to a radius of deformation of 50 km. The distortion factor « is equal
to 20. Solid lines are for undistorted physics and dashed lines are
for distorted physics.



APRIL 1984

of large « is to lower the frequency of Rossby waves.
In addition it tends to shift the maximum frequency
towards lower east-west wavenumbers.

5. Equatorial waves

Since waves at the equator have some unique prop-
erties, we extend our analysis of the distorted physics
to this region. Egs. (3.9) and (3.10) apply to an equa-
torial B-plane if By is substituted for fin the Coriolis
term. Moore and Philander (1977) show how the shal-
low water equations on the equatorial 8-plane can be
reduced to a single equation in the meridional velocity.

OgH YV — (By) ~ 8,21V, + BgH 0V, = 0. (5.1)

As before t' and H), correspond to stretched time, and
the altered equivalent depth of the distorted physics.
Assuming a solution to (5.1) of the form,

Va = Ap)e (5.2)
and defining a new meridional coordinate,
n = B'y(gH;)"", (5.3)
we obtain,
dy+2j+1—9)4=0. (5.4)

Solutions to (5.4) are parabolic cylinder functions with
characteristic values,

- n1/2 /2
—tef) " (k2 L ;7) . (5.5)

For the case of ¥ = [ we make use of (4.3) and (4.4)
so that (5.5) becomes

_ (gHo)'” ( 2y KB _ (we)?
8 wa gHa

2j+1=

2j+ 1= ), (5.6)

and (5.3) becomes
n = 8"2y(gHa)™", (5.7)

Hermite polynomials, to which the parabolic cylinder
functions are proportional, have the property of being
oscillatory near the equator in the range

n<(2j+ D7 (5.8)

and evanescent at higher latitudes. Relation (5.7) shows
that « will change the scale of equatorial trapped waves
but the 4 power dependence on « is rather weak.
Eastward and westward propagating waves are
shown in Fig. 2. For the case of ¥ = 1, the Kelvin

wave speed is
H
c= /2.
[23

In the distorted physics, the speed of long Rossby waves
is the same fraction of the Kelvin wave speed as in
the undistorted case. All equatorially trapped waves
have some meridional structure. There is no tendency

(5.9)
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for the frequencies of the distorted physics case to
merge with the true physics case for low east~west
wavenumbers.

6. Distorted physics and baroclinic instability

Completely aside from numerical instabilities,
physical instabilities may interfere with convergence
to an equilibrium solution. For this reason it is im-
portant to investigate how the distorted physics affects
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FI1G. 2. Dispersion diagram for equatorially trapped waves. The
equatorial radius of deformation is 50 km and the distortion factor
is 20 for (upper) eastward propagating waves and (lower) westward
propagating waves. Solid lines are for undistorted physics and dashed
lines are for distorted physics.
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baroclinic instability. To simplify the analysis we will
consider a two-layer model with uniform zonal flow.
The equations of a quasi-geostrophic model are

ad VY, + U8, — N9, + Uidx)¥1 — ¥2)
+ [ + XUy — Us)1o =0,
ad VY, + U092, + N9, + Undx )1 — ¥2)
+[8—N(U, — U))o¢2 =0, (6.2)

where A\? = f;*/gH, H is the thickness of both layers.
These are the standard equations (Holton, 1979) except
for a, the distortion factor, which appears as a coef-
ficient of the local change of vorticity in each layer.
It does not appear in the other time-derivative terms
associated with vortex stretching.

Assuming solutions of the form,

wl = Aeik(x—-cl)’ ‘l/2 = Beik(x—ct), (63)
which do not vary in the y-direction, (6.1) and (6.2)

become y
(o ea)=o
a; = (ac— U2+ B+ Nc— U,)
ap = —Nc—U)
ay = —N(c— 1)
ay = (ac — Up)k* + B+ N(c — U,)

Let us assume a translating coordinate system such
that

6.1)

6.4)

U, =-U,, (6.5)
also let
1
Ur= 3 U, - U,). (6.6)
For convenience let us define a new variable
k2
u= - 6.7)

The wave speeds obtained from the characteristic val-
ues of (6.4) are,

_ PQap+1) |
o (6.8)
2 1\ 4 21 —
B/ Ur(1 u). 6.9)

T 164k + a)

Growth rates as a function of vertical shear and east-
west wavenumber are shown in Fig. 3. For a = 1, (6.8)
and (6.9) reduce to the usual formulas for a two-level
model (e.g., see Holton, 1979, p. 218). The effect of
large « is to reduce the growth rate of baroclinically
unstable waves. Thus a very small amount of friction
is sufficient to damp the waves. On the other hand,
the threshold shear is reduced so that instability will
be present over a wider range.

au+a
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lines are for distorted physics.

7. A specific example

In the preceding sections we have analyzed the effects
of the distorted physics on free waves and unstable
waves. To show how the distorted physics can be ap-
plied in a specific case, we consider a recent calculation
by Bryan et al. (1982). In order to look at the transient
response of an air-sea model to a sudden increase of
atmospheric CO,, an equilibrium climate had to be
computed as an initial condition. Without the appli-
cation of an accelerated iterative method, a straight-
forward time-integration of the model would have been
too lengthy to be feasible.

The ocean model of Bryan et al. (1982) has a simple
geometry. It is enclosed between two meridians 60°
of longitude apart and runs from the North pole to
the equator. There are 12 levels, spaced as shown in
Table 2. Horizontal resolution is 4.5° of latitude and
3.75° of longitude, with a Fourier filtering applied in
the zonal direction poleward of 42°N to compensate
for the convergence of meridians (see Bryan et al.,
1975 for details). The minimum horizontal spacing is
thus the east-west distance between grid points at 42°N
or about 250 km.’

To insure that the advective velocity rather than a
wave speed will determine the time step requires that

U> g_}!_”=
y «a

Cy, a.1)
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TABLE 2. Time steps used in the temperature and salinity
equations in the study of Bryan et al. (1982).

KIRK BRYAN

VA At
Level (m) (days) ¥
1 25.5 30 1.00
2 81.1 3.0 1.00
3 169.5 3.0 1.00
4 295.3 3.0 1.00
5 482.8 4.6 0.65
6 754.6 11.6 0.26
7 1130.6 213 0.14
8 1622.4 344 0.09.
9 2228.3 60.8 0.05
10 2934.7 73.0 0.04
11 3720.9 79.7 0.04
12 4565.5 83.0 0.04

where U is the maximum advective speed and C,, is
the distorted speed of an internal gravity wave, the
fastest wave in the system. Thus
H,
Qmin > %’
is a criterion for choosing a. The actual parameters
are shown in Table 3. The distortion parameter « is
chosen to be 2019 rather than the value of 144 based
on the normal speed of the first baroclinic mode in-
ternal gravity wave speed. Table 2 shows the choice
of time steps at each level. Since the advective velocity
decreases with depth, it is possible to increase the time
step. This allows a time step of over 80 days at the
lowest level which is very useful in accelerating con-
vergence in the deep sea.

All of the analysis of the preceding sections is based
on a uniform value of v with respect to depth. However,
an increasing time step at greater depths in the tem-
perature and salinity equations is equivalent to v as
defined in (3.5) decreasing with depth. Values are given
in Table 4. In terms of the linearized equations it is
obvious that an increasing time step with depth will

(7.2)
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have the same effect as increasing the stratification in
deep water, changing the modal structure and internal
wave speeds. As a result, internal gravity waves will
move faster in the distorted physics system. To com-
pensate for this « was chosen to be 2019 instead of
the minimum value of 144 given in Table 3.

The calculations of Bryan et al. (1982) have recently
been repeated. The coupled model is integrated for an
extended period, equivalent to 6.5 years for the at-
mosphere and 650 years for levels 1-4. The equivalent
length of integration for the deeper levels is given by
the ratio of time steps shown in Table 2. The final
result of this extended integration is used as an initial
condition for a 50 year synchronous integration in
which the time scales are uniform in the atmosphere
and all levels in the ocean. There is almost no net
change in average sea surface temperature. In Table
4 the net heating and cooling of the entire ocean is
given for 5 year periods in units of W m~2. Note that
the net heating rarely exceeds 1 W m™2, and the average
for the entire period is less than 0.4 W m™2. At this
rate of heating 300 years would be required for the
upper kilometer of the ocean to warm 1.0°C. This
slow drift is a very small departure from complete
equilibrium. The synchronous integration tests the de-
gree of climate equilibrium obtained by the accelerated
method, and the results of Table 4 show that a re-
markable state of balance has been achieved.

8. Discussion

Model studies of global climate suggest that the sys-
tem responds in a nearly linear fashion to small per-
turbations of external conditions. The equilibrium cli-
mate itself, however, may involve many highly inter-
active processes. This is particularly true of the climate
of the ocean. As pointed out in the Introduction,
straightforward numerical integration of the equations
of an ocean model is not an efficient way of finding
an equilibrium solution. The broad-banded character
of the ocean with respect to natural frequencies makes

TABLE 3. Parameters used in the ocean model of Bryan et al. (1982). Stability criterion for mixing requires a factor of 1/4 because the
differencing is uncentered over 2 time steps for the diffusion terms. The first-mode internal gravity wave speed is assumed to be 3 ms™".

Maximum time step

Value

Parameter Symbol Value Formula (days)
Minimum horizontal spacing Ax 250 km —_ —
Minimum vertical spacing Az 50 m —_ —
Minimum possible distortion factor gH'IU? 144 —_ -
Actual distortion factor « 2019 —_ —
Horizontal diffusion Aun 10° m? 57! At < (Ax)*/4Ayy 181
Horizontal viscosities Anm 25X 10° m?s™ At < (Ax)* /44w, 1462
Vertical diffusion Avy 03X 10 m?s™! At < (AzZ)Y44yy 241
Vertical viscosity Avm 20.0 X 107* m?s™! At < (Az)*/4Avr 7300

Maximum velocity U 025ms™ At < Ax/2U 5.8
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TABLE 4. Results from a numerical integration of a coupled at-
mosphere-ocean model of Bryan ef al. (1982). Net surface heating
of the ocean is shown for synchronous integration to test the climatic
equilibrium obtained by using multiple time scales.

Average ocean

Time interval surface heating

(years) (Wm?)
0-5 0.42
5-10 0.38

10-15 1.06

15-20 1.22

20-25 0.06

25-30 —0.02

30-35 0.25

35-40 ~0.08

40-45 0.35

45-50 0.40

50 year average 0.40

it necessary to resolve a range of time scales three
orders of magnitude greater than that for the atmo-
sphere. The distorted physics approach, which has been
used in a large number of ocean climate studies, at-
tempts to narrow the frequency band of ocean models
in two ways. Gravity waves and Rossby waves are
decreased in speed in such a way that equilibrium
solutions are unchanged. This eliminates the very high
frequencies. At the same time the very long time scales
are reduced by shrinking the local time scale of the
-deep sea relative to the upper ocean. This distortion
may also be interpreted as decreasing the local heat
and salt capacity of the deep ocean without altering
the advective or diffusive fluxes of these quantities.
Since only local derivatives with respect to time are
changed, equilibrium solutions with distorted physics
should correspond exactly to equilibrium solutions for
the prototype model. High resolution models in a pa-
rameter range which allows baroclinically unstable
disturbances cannot, of course, be handled in this way.

Recently, Hasselmann (1982) has outlined methods
for addressing the same problem. His approach is based
on drastic filtering to remove both gravity waves and
short Rossby waves. In addition, Hasselmann (1982)
proposes to use a ‘“mosaic” of separate models for
different regions of the ocean which would isolate the
“fast” physics of boundary regions from the “slow”
physics of the ocean interior. The regional models
would be coupled in a non-synchronous fashion to
provide the required fluxes between the different re-
gions. There is an analogy between the use of different
time scales in the horizontal plane as suggested by
Hasselmann (1982), and the use of different time scales
in the vertical plane outlined in this paper. Future
work should be directed to determining if the best
features of Hasselmann’s (1982) methods and the dis-
torted physics approach can be combined to form an
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even more efficient method of calculating ocean cli-
mate.
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APPENDIX A
Machine Requirements

The vectorization of arithmetic operations in mod-
ern large scale computers makes it very difficult to
predict machine requirements on the basis of expe-
rience on a different piece of equipment. Just to provide
a concrete example, Fig. A1 shows the convergence of
a primitive equation, World Ocean model with fixed
surface boundary conditions specified from observa-
tions. The model is similar to that of Case I (low res-
olution) of Bryan and Lewis (1979). Initially the tem-
perature and salinity are uniform in both horizontal
and vertical directions. Within 20 000 iterations con-
vergence is virtually complete. The time steps param-
eters correspond exactly to those of Table 2 and 3.
Based on the 3-day time step at upper levels, 20 000
iterations is equivalent to an integration of 164 years.
For an 80 day time step at lower levels, the same
number of iterations is equivalent to over 4 000 years
of integration. _

A spectral model of the atmosphere with approxi-
mately the same horizontal and vertical resolution and

MACHINE HOURS —

3 10 15 20 25
18
| 25m
16 [
] 12 4%m
O
<
® 81 GLOBAL OCEAN
(12 LEVELS, A)=3.75°, A¢ =450}
4 <
4566m
0 " 20 0 60

ITERATIONS (x103) ——

FIG. Al. Area-averaged potential temperature in a model of the
World Ocean. The trend of temperature as a function of the number
of iterations is a measure of the convergence of the accelerated method.
The model is similar to Bryan and Lewis (1979).
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using an implicit method with respect to gravity waves
requires 5-6 hours of CYBER 205 machine time, and
approximately 18 000 iterations. Thus it takes about
the same amount of computational effort to reach
equilibrium for an ocean model with the distorted
physics and compressed time scales as it does to in-
tegrate over one year in an atmospheric model of com-
parable resolution.
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